The generator matrix

 1  0  0  1  1  1  X  1  1  X  1  0  0  1  1  1  0  1  1  0  1  1  0  0  1  1  0  0  X  X  X  X  0  X  X  0  1  1  0  1  1  X  1  1  0  1  1  X  X  X  0  1  1  1  1  1  0  X  1  1  1  1  1  1  1  1  1  1
 0  1  0  0  1 X+1  1  0  1  1 X+1  1  0  0  X X+1  1  X X+1  1  X  1  1  X  X  1  1  X  1  1  1  1  1  1  1  1  0 X+1  1  0 X+1  1  X  1  1  X  1  1  0  0  X  X  0  X  X  0  0  X  X  X  0  0  X  0  X  X  0  X
 0  0  1  1  1  0  1  X X+1 X+1  X  X  1 X+1  X X+1 X+1  0  1  1  1  X  0  1 X+1  0  X  1  1 X+1  1  1 X+1 X+1 X+1  1  0  0  0  X  X  X  X  X  X  0  0  0  0  X  X  1  1  1 X+1  X  1  1  X  X  X X+1  1  1  0 X+1  X  1
 0  0  0  X  0  0  0  0  0  0  0  0  0  X  X  X  X  X  X  X  0  X  X  X  0  X  X  X  0  0  X  X  0  X  X  0  0  0  X  X  X  0  X  X  0  0  0  X  X  0  0  0  0  X  X  X  X  0  0  0  X  0  X  0  0  X  X  0
 0  0  0  0  X  X  0  X  0  X  0  X  X  X  X  0  0  0  X  X  0  0  0  0  X  X  X  X  X  0  X  0  X  0  X  0  X  0  X  0  X  0  0  X  0  X  0  X  0  X  X  X  0  X  0  X  0  0  X  0  0  X  0  X  0  X  0  0

generates a code of length 68 over Z2[X]/(X^2) who�s minimum homogenous weight is 64.

Homogenous weight enumerator: w(x)=1x^0+20x^64+70x^65+39x^66+31x^68+38x^69+14x^70+8x^72+12x^73+6x^74+1x^78+3x^80+6x^81+3x^82+1x^84+2x^85+1x^94

The gray image is a linear code over GF(2) with n=136, k=8 and d=64.
This code was found by Heurico 1.16 in 0.0587 seconds.